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Abstract
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1 Introduction

Fama and MacBeth (1973) regressions are the standard method for estimating cross-sectional

models of expected returns with firm characteristics. Fama and French (1992) uses Fama–

Macbeth regressions to show a firm’s price-to-earnings ratio does not provide independent

information about expected returns after controlling for firm size and book-to-market ratio.

Haugen et al. (1996) uses Fama–Macbeth regressions to estimate stocks’ expected returns

with 41 characteristics1. Lewellen (2015) compares realized returns with Fama–Macbeth

regression estimates of expected returns. Green et al. (2017) estimates expected returns with

Fama–Macbeth regressions and a panel of 94 characteristics weighted to reduce micro-cap

stocks’ effect on the expected return estimates. Han et al. (2019) estimates expected returns

using several Fama–Macbeth regression variations and roughly 300 firm characteristics.

Fama–Macbeth regressions are useful for panels with a moderate number of characteristics

but are less well-suited for estimating expected returns with many characteristics for four

reasons. First, the standard Fama–Macbeth regression is not defined for panels where

one or more cross-sections have fewer observations than characteristics. The standard

Fama–Macbeth procedure estimates each cross-section’s slopes with the ordinary least

squares regression model, which applies only to estimation problems where the number of

observations exceeds the number of covariates. Second, high cross-characteristic correlations

can make slope estimates imprecise because of a collinearity problem among characteristics.

For instance, Green et al. (2017) drops 8% of their initial characteristic panel to mitigate

the effects of multicollinearity when running Fama–Macbeth regressions of stock returns

on firm characteristics. Dropping highly correlated characteristics improves remaining

characteristics’ precision but attenuates the relationship between expected returns and

characteristics (Lubotsky and Wittenberg, 2006). Third, running cross-sectional regressions

with a relatively large number of covariates compared to observations produces slope

estimates that are overfitted and weakly correlated with future returns (Han et al., 2019;

Freyberger et al., 2020). Last, Fama–Macbeth regressions with too many characteristics are

likely less efficient than constrained regression approaches that capitalize on the overlap in
1Haugen et al. (1996) is perhaps the first to use Fama–Macbeth regressions to estimate expected returns

with such a large set of characteristics.
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characteristics’ information content about expected returns (Light et al., 2017).

I propose a modified Fama–Macbeth regression for estimating expected returns with many

characteristics, including settings with more characteristics than cross-sectional observations.

The modified Fama–Macbeth procedure uses a constrained variant of ordinary least squares

to run cross-sectional regressions instead of ordinary least squares. The constrained variant

of ordinary least squares is the Predictor Envelope Regression (PER) model from Cook et al.

(2013). The PER model is the same as ordinary least squares except for the addition of

constraints collectively called an envelope, a form of targeted dimension reduction. The

envelope constraint lets the PER model consistently estimate both expected returns and

slopes for cases with more characteristics than observations (Cook et al., 2019). Practically,

the PER model assumes a cross-section’s characteristics can be repackaged into a smaller

number of psuedo-characteristics that preserve the original characteristics’ information about

expected returns.

I construct out-of-sample expected return estimates with 3,655 characteristic interac-

tions and the modified Fama-Macbeth regression model to study the relationship between

characteristic interactions and the cross-section of expected returns. Out-of-sample expected

return estimates are a direct means of investigating the aggregate relationship between many

variables and the cross-section of expected returns (Haugen et al., 1996). Each month, I

use a ten-year window and the modified Fama–Macbeth regression to estimate the average

relationship between characteristic interactions and expected returns. Next, I use the model

to predict returns over the following month. The standard Fama–Macbeth regression cannot

be used for this estimation problem because the typical cross-section of US stocks without

microcaps has about 2,000 stock return observations over the paper’s sample period. The

3,655 characteristic interactions are produced by a panel containing 85 standard firm char-

acteristics. The characteristics are based on Green et al. (2017) constructions and include

well-known variables like market beta, size, accruals, and momentum.

I show five main results. First, I show characteristic interactions are associated with

statistically and economically significant information about the cross-section of expected

returns using portfolios built from a decile sort on stocks’ interaction-based expected return

estimates. For the equal-weight decile portfolios, average returns smoothly increase from
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the low portfolio, which holds stocks with the lowest expected return estimates, to the

high portfolio, which contains stocks with the greatest expected return estimates. The

same pattern of increasing average returns holds for the value-weighted decile portfolios. A

standard equal-weight long-short portfolio that longs stocks with high predicted returns

and shorts stocks with low predicted returns has a positive and significant average monthly

return of 3.86% and an annual Sharpe ratio of 3.90. For reference, a comparable long-short

portfolio built with expected return estimated based on the original 85 characteristics has

an average monthly return of 3.65% and an annual Sharpe ratio of 2.42.

Second, I show that standard multifactor models of stock returns do not explain the

average excess returns of long-short interaction portfolios. I include results for the Carhart

(1997) four-factor model, Hou et al. (2015) q-factor model, Fama and French (2015) five-

factor model, and the Fama and French (2015) five-factor model plus the “winners minus

losers” momentum factor. The interaction long-short portfolios have positive and significant

risk-adjusted returns for all of the factor models. The interaction long-short portfolios also

have positive and significant risk-adjusted returns when I include long-short portfolios for

the characteristic-based decile sorts in the multifactor regressions as additional factors.

Third, I use standard Fama–Macbeth regressions to show both characteristic interactions

and characteristics contain incremental information about the cross-section of expected

returns absent from the other collection of variables. Specifically, I run Fama–Macbeth

regressions of stock returns on the interaction-based expected return estimates, characteristic-

based expected return estimates, and combinations of the two expected return estimates.

Slopes from Fama-Macbeth regressions of stock returns on interaction-based expected return

estimates are positive for all stock samples. When I run Fama–Macbeth regressions of

stock returns on both interaction- and characteristic-based expected return estimates, the

slope for the interaction-based expected return estimates remains positive and significant.

I also use observations from Lewellen (2015) to evaluate the bias of the interaction- and

characteristic-based expected return estimates’ cross-sectional variance. Both the interaction-

and characteristic-based expected return estimates exhibit more cross-sectional variance

than realized returns. Combination estimates of expected returns incorporating both the

interaction- and characteristic-based expected return estimates have cross-sectional variances
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much closer to the cross-sectional variance of realized returns.

Fourth, I examine which characteristic interactions contain incremental information about

expected returns in the cross-section. I find about 100 interactions have incremental infor-

mation. Within stocks without microcaps, 154 interactions contain incremental information

about expected returns at the 1% significance level. And, within large stocks, 88 interactions

have incremental information at the 1% significance level. I show the number of interactions

with significant and incremental information about expected returns substantially exceeds

the expected number of type-I errors under the reported significance levels’ null hypotheses.

I also use Wald tests to show most of the 85 characteristics produce at least one interaction

with significant and incremental information about expected returns.

Fifth, I show the paper’s results are robust to the specification of the PER model’s single

tuning parameter. The tuning parameter is a positive integer that specifies the number of

repackaged variables the model uses to represent cross-sectional information in the original

variables about expected returns (Cook et al., 2013). If the chosen value is too small, then

the predictor model’s slopes and expected return estimates will omit information in the

original variables about expected returns and underestimate the relation between expected

returns and characteristics. If the chosen value is too large, the model’s slopes will be less

precise because the slope estimates depend on some variation in characteristics uncorrelated

with the cross-section of expected returns. I use a standard, sequential F-test from Osten

(1988) to estimate the tuning parameter’s proper value for the paper’s main results.

This paper provides a new method for estimating and testing relationships between

expected returns and large panels of firm characteristics, including settings where character-

istics are as numerous or more numerous than cross-sectional observations. The modified

Fama–Macbeth regression is a tool well-suited to wrangling the cross section’s predictor

zoo while preserving the standard Fama–Macbeth regression specification. Developing

methods for estimating expected returns from the available predictor zoo is useful for several

lines of financial research. Expected returns can be used to improve portfolio optimization

(Treynor and Black, 1973), estimate firms’ cost of capital, generate benchmark portfolios

for investment managers (Chan et al., 2009), construct more powerful basis assets for asset

pricing tests (Haugen et al., 1996), and help the direct study of expected returns (Lewellen,
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2015).

A large number of variables likely provide incremental information about the cross-section

(Kozak et al., 2020). Models of expected returns typically give central roles to a few intuitive

but unobserved variables like expected future profitability and firm quality. For example,

expected future profits are not observable, and a variety of firm characteristics can provide

some information on them (Fama and French, 2000). Likewise, firm quality is a combination

of four unobserved concepts, profitability, growth, safety, and payouts. Each of these four

unobserved concepts has many potential proxy variables. Kozak et al. (2020) find that

stochastic discount factors (SDFs) constructed from many characteristics perform much

better out of sample than SDFs built with only a few firm characteristics. Kozak et al.

(2020) also find that characteristics provide information about a relatively small number

of common factors in the cross-section. Light et al. (2017) use partial least squares and

find that cross-sectional expected return estimates constructed with many characteristics

perform well out-of-sample and capture information about expected returns unexplained by

factor models built with a few firm characteristics. Light et al. (2017) also note that the

information contained in their characteristic sample about expected returns can be capture

by a few common factors. Han et al. (2019) finds expected return estimates using many

characteristics, model averaging, and penalized regression techniques better explain the

cross-section of expected returns than cross-section models using a few characteristics.

Statistical envelopes are a form of dimension reduction designed for estimating regression

models when covariance between the regression model’s variables is well described by a

relatively small number of variables built by repackaging the original variables (Cook

et al., 2010, 2013). This assumption is consistent with both the conceptual and empirical

relationships the existing factor model literature uses to interpret the relationship between

the cross-section of expected returns and firm characteristics. Models that link observed

characteristics to expected returns via expected earnings, quality, or other unobserved,

conceptual variables describe the relationship the PER model assumes between returns

and observed characteristics via repackaged variables. Empirically, Light et al. (2017)

use partial least squares to repackage several observed characteristics into one expected

return characteristic and find that the repackaged characteristic and expected returns are
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positively correlated. The model averaging and combination expected return forecasts from

Han et al. (2019) also indicate extensive characteristic collections can be repackaged into

fewer psuedo-characteristics while preserving the original characteristics’ information about

expected returns. The characteristic-based factor-beta estimates from Kelly et al. (2019) also

show repackaging observed characteristics into a smaller number of psuedo-characteristics

can preserve the original characteristics’ information about expected returns.

This paper also contributes to a growing literature using contemporary statistical and

machine learning techniques for high-dimensional empirical asset pricing. Rapach et al.

(2013) uses the lasso to select variables for predicting international stock returns. Kelly et al.

(2019) build a generalization of PCA which accommodates time-varying factor loadings and

uses firm characteristics as proxies for factor loadings. Kozak et al. (2020) uses shrinkage

to estimate the stochastic discount factor using many characteristics. Freyberger et al.

(2020) estimates a non-parametric model of expected returns using a group lasso to select

characteristics. Giglio and Xiu (2019) uses a three-pass regression procedure, PCA, and many

portfolios to estimate the stochastic discount factor when some economically relevant factors

may be omitted from the SDF’s specification. Han et al. (2019) proposes using a combination

of model averaging, penalized regressions, and combination forecasts to estimate cross-section

models of expected returns from firm characteristics with many characteristics. In contrast,

this paper contributes a generalization of the Fama–Macbeth regression appropriate for

estimation problems with thousands of firm characteristics by leveraging the that result

most characteristics are proxy variables for a small number of latent characteristics that

effectively describe the cross-section of expected returns.

I organize the paper as follows. Section 2 describes the modified Fama–Macbeth re-

gression model with envelope-based dimension reduction. Section 3 describes the paper’s

empirical analysis of the relationship between the cross-section of expected returns and firm

characteristics’ interactions. Section 4 concludes the paper.
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2 Fama–Macbeth Regressions via Envelope Methods

This section presents the paper’s methodology. Section 2.1 describes the standard Fama–

Macbeth regression using OLS to estimate cross-sectional regression slopes. Section 2.2

introduces the PER model from Cook et al. (2013). Section 2.3 defines the modified

Fama–Macbeth regression procedure.

2.1 Standard Fama–Macbeth Regression

A fundamental question for empirical asset pricing is why average returns vary across

assets. The Fama–Macbeth regression provides a specification, point estimates, and standard

errors appropriate for answering this question. The Fama–Macbeth regression estimates the

cross-sectional relationship between stocks’ average returns and a collection of explanatory

variables using a multiple regression specification. The specification’s explanatory variables

can be factor betas or firm characteristics depending on the estimation problem. I will work

with firm characteristics, which is standard for recent cross-sectional literature using many

firm characteristics.

The Fama–Macbeth regression examines how cross-sectional variation in stocks’ expected

returns are related to a collection of firm characteristics,

Eri,t =
J∑
j=1

bjxi,t,j , (1)

where Eri,t is the expected return of stock i for month t, bj is the effect of characteristic

j on expected returns, and xi,t,j is characteristic j observed for firm i at the beginning of

month t. The equation’s unknown variables are the bj slopes.

The Fama–Macbeth regression’s slopes, bj , are estimated in two steps. First, run monthly

cross-sectional OLS regressions of stock returns on firm characteristics. The regression for

month t is

ri,t = at +
J∑
j=1

b̂j,txi,t,j + ei,t. (2)
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Second, compute the sample average of the monthly, cross-sectional regression slopes:

b̂j = 1
T

T∑
t=1

b̂j,t. (3)

2.2 Predictor Envelope Regression

The specification for a cross-sectional regression of stock returns on firm characteristics with

the Predictor Envelope Regression (PER) model has four equations.

ri,t = at + b′txi,t + ei,t (4)

bt = Gtηt (5)

ηt = (G′tX ′tXtGt)−1G′tX
′
tRt (6)

Gt = [ΣXtRt ,ΣXtΣXtRt , ...,ΣK−1
Xt

ΣXtRt ]. (7)

Additionally, assume Xt is cross-sectionally standardized, Gt is J ×K, K ≤ min(J,N) and

vector ηt is K×1. ΣXtRt = 1
NX

′
t(Rt−1Nat) is a vector of cross-sectional covariances between

stock returns and firm characteristics. ΣXt = 1
NX

′
tXt is the cross-sectional covariance matrix

of the firm characteristics.

The PER specification begins with the same equation as the standard OLS regression

specification. Equation (4) states cross-sectional variation in stock returns is proportional to

cross-sectional variation in standardized firm characteristics.

Equation (5) introduces the additional structure on bt that distinguishes the PER

specification from OLS. It assumes that bt belongs to a K dimensional subspace of Xt

spanned by matrix Gt. Intuition for this assumption is explained below. Constraining bt

to belong to a subspace of Xt with dimension K ≤ min(N,P ) is the PER model’s device

for estimating the standard linear regression specification when N < P . Since bt requires

K spanning vectors, we can map the original P > N variables composing Xt into K ≤ N

new variables XtGt and use these K new variables to estimate bt instead of Xt. The K

new variables XtGt contain all of the information in Xt about the regression’s slopes. And,

importantly, the new variables XtGt have an invertible covariance matrix because K ≤ N .

An OLS regression of stock returns on XtGt yields regression coefficients ηt, which we can
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left multiply ηt by Gt to recover the bt slopes for the infeasible regression of stock returns on

Xt. Equation (6) states that ηt is the slope from the OLS regression ri,t = at + η′tZt + ei,t

where Zi,t = G′tXt.

Equation (7) describes the PER model’s assumptions regarding the subspace of Xt

spanning bt by specifying Gt. Specifically, equation (7) states the subspace of Xt spanning

bt is the K order Krylov matrix specified by the characteristics’ covariance matrix ΣXt

and the vector of return and characteristic covariances ΣXtRt . The sample Krylov matrix

Gt = [ΣXtRt ,ΣXtΣXtRt , ...,ΣK−1
Xt

ΣXtRt ] consistently estimates the subspace of Xt spanning

bt (Cook et al., 2007; Cook, 2018). Note that Gt is not unique because GtO, with O

orthogonal, produces the same solution for bt.

Höskuldsson (1988) provides three intuitive explanations for the specification of Gt. First,

Gt forms the K-variable linear combination of Xt with the smallest sum-of-squares prediction

of Rt. Second, Gt generates the K combinations of Xt that have maximal covariance with

Rt. And, third, columns of Gt extract the K largest, common factors in the univariate

covariances between Rt and Xt.

The month t cross-sectional PER regression of stock returns on firm characteristics can

be implemented in three steps after fixing a value for K. The parameter K can be estimated

with the procedure in appendix A or given a user-chosen fixed integer value representing the

number of repackaged variables the PER model uses to estimate bt. The implementation’s

three steps follow.

1. Compute the columns of Gt = [g1,t, g2,t, ..., gK,t] sequentially. Let g1,t = ΣXtRt , then

let gk,t = ΣXtgk−1,t for k = 2, ...,K.

2. Run a cross-sectional regression of Rt on XtGt, i.e. Rt = at + (XtGt)ηt + ei,t. Keep

the slope vector ηt.

3. Compute bt = Gtηt.

The steps of the procedure summarize how the PER model estimates linear regression

slopes. First, the PER model compresses information about cross-sectional variation in stock

returns scattered across the P original firm characteristics into a sufficiently small number

of variables for an OLS regression of stock returns on the compressed variables to be feasible.

The “compression” matrix is Gt and the compressed variables are XtGt. Second, the PER
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model regresses stock returns on the compressed variables. The slope for the regression of

stock returns on the compressed variables is ηt. Third, the PER model decompresses the

slopes from the regression of stock returns on compressed characteristics into slopes for the

original firm characteristics where the decompression of ηt is bt = Gtηt.

The compression metaphor also provides intuition for how varying K influences the

slopes PER produces for bt. Small values for K yield more compressed estimates of the

original characteristics’ information about the cross-section of stock returns. Suppose the

value chosen for K is less than the population value of K. In this case, the PER model’s

compression of Xt discards some information about the covariance between stock returns

and Xt, and the PER model’s estimate of bt will omit the discarded information. Next, if

the value chosen for K equals the population value of K, then the PER model compresses

Xt without discarding relevant information about bt or keeping information irrelevant for

estimating bt. Last, suppose the value chosen for K exceeds the population value of K. In

this scenario, the PER model compresses all information necessary for estimating bt, but the

PER model also compresses some variation in Xt that does not contain information about

bt.

The intuition from Höskuldsson (1988) about Gt also explains the order in which PER

compresses information about characteristics’ covariances with stock returns. For each value

of K, PER compresses as much information as possible about characteristics’ covariances

with the cross-section of stock returns. The first column of Gt compresses Xt into the

factor with maximal covariance with the cross-section of returns. The second column of Gt

compresses Xt into the factor with the second-most covariance with stock returns. Column

k of Gt compresses Xt into the factor with the k-th most covariance to the cross-section.

The columns of Gt construct factors that have decreasing covariances with the cross-section

of stock returns (De Jong, 1993). Since Gt extracts factors from Xt in decreasing order of

their covariance with the cross-section, Gt collects as much information about covariance

between returns and characteristics as possible for each value of K.

10



2.3 Modified Fama–Macbeth Regression

The Fama–Macbeth procedure’s difficulties with panels where the number of characteristics

is large or exceeds the number of cross-sectional observations is because of the procedure’s

use OLS to estimate cross-sectional regression slopes. A natural solution to running Fama–

Macbeth regressions with more characteristics is replacing the OLS regression model with

another regression model better suited to estimation tasks with many covariates relative to

the number of observations. This section describes a modified Fama–Macbeth regression

using the PER model from Cook et al. (2013) instead of OLS to estimate cross-sectional

quantities. The modified Fama–Macbeth regression is the same in all respects except for its

use of PER to find cross-sectional slopes instead of OLS.

The modified Fama–Macbeth procedure estimates stocks’ expected returns in two steps.

First, run monthly cross-sectional PER regressions of stock returns on firm characteristics.

The regression for month t is

ri,t = at +
J∑
j=1

b̂PERj,t xi,t,j + ei,t. (8)

Second, compute the sample average of the monthly, cross-sectional PER regression slopes:

b̂PERj = 1
T

T∑
t=1

b̂PERj,t . (9)

where variable bPERj,t is the month t cross-sectional PER regression slope for characteristic j.

And, variable b̂PERj is the time series average of the cross-sectional slopes PER slopes b̂PERj,t .

Standard errors and other summary statistics reported for the standard Fama–Macbeth

regression model can be computed in the same manner for the modified Fama–Macbeth

regression model.

3 Empirical Analysis

This section studies the cross-sectional relationship between 3,655 characteristic interactions

and expected stock returns with the paper’s envelope modification of the Fama–Macbeth
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regression model.

3.1 Data

This paper uses a collection of typical firm characteristics from other recent publications

examining the relationship between the cross-section of expected returns and many firm

characteristics. The vast majority of the paper’s characteristics are from Green et al. (2017),

which is a standard sample of characteristics for high dimensional cross-sectional studies,

e.g. Han et al. (2019). The remaining characteristics are from Freyberger et al. (2020),

which is also a standard characteristic sample, e.g. Kozak et al. (2020) and Kelly et al.

(2019). Characteristic definitions follow the descriptions available in Green et al. (2017) and

Freyberger et al. (2020). When additional implementation details are necessary I refer to

the articles cited by Green et al. (2017) and Freyberger et al. (2020).

Table 1 lists the characteristics I use to examine the cross-sectional relationship between

stock returns and characteristic interactions. The sample includes a combination of well-

studied and less-studied characteristics. Characteristics are from both published articles

and unpublished working papers. Some characteristics are from articles published some

time ago, and other characteristics are from more recent publications. Sufficiently precise

characteristic definitions for implementation and replication purposes are available in the

appendices of Green et al. (2017) and Freyberger et al. (2020). The earliest characteristics

are from 1977. The most recent characteristics are from 2016. The characteristics represent

all categories listed in the classification scheme from Harvey et al. (2016).

The paper uses the CRSP database for stock returns and the Compustat database for

other financial information. The sample begins with all common stocks traded on the NYSE,

AMEX, or NASDAQ listed in CRSP. I keep stocks with month-end market values in CRSP

and a non-missing value for common equity in their annual financial statements. I merge

the Compustat database on the remaining CRSP sample of monthly stock returns. Month

t characteristics use information available at the end of month t − 1. I assume annual

financial statements are available six months after a firm’s fiscal year-end. I assume quarterly

financial statements are available four months after the end of a firm’s fiscal quarter. These

assumptions for the alignment of stock prices and financial statements are standard and
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follow Green et al. (2017). Characteristics are updated monthly. The paper’s sample is from

January 1980 to December 2017.

I use the procedure from Green et al. (2017) to fill missing firm characteristic observations.

Each month, I first winsorize characteristics at the 1st and 99th percentiles of their monthly

values. Next, I cross-sectionally standardized the characteristics to have zero mean and unit

standard deviation. Last, I assign missing characteristic observations the value zero in the

post-standardized data-set. This approach to filling missing data points is the zero-order

regression method from Wilks (1932). Filling missing firm characteristics is necessary.

Most firms have a few characteristics with missing observations. Cross-sectional regressions

excluding firms with missing characteristics would contain a negligible fraction of domestic

publicly traded equity.

I build the panel of characteristic interactions used for the paper’s results with the

post-standardization characteristics before filling missing values with zero. The paper’s

interactions include all unique, two characteristic interactions of the original 85 characteristics

in table 1. I’ve chosen this procedure for generating interactions because this is the standard

procedure for generating interactions among variables in economic and financial studies. I

do not include each characteristic’s interaction with itself. The resulting panel has 3,655

cross-characteristic interactions, which I cross-sectionally standardize and assign the value

zero to missing interaction values.

The paper reports results for several samples of domestic stocks. The five stock samples

used for the paper’s results are all stocks, all stocks without microcaps, large stocks, midcap

stocks, and small stocks. Microcap stocks are stocks with market capitalizations below the

20th quantile of NYSE-trade stocks. Small stocks have market capitalizations below the

30th quantile of NYSE-traded stocks. Midcap stocks have market capitalizations above the

30th quantile and below the 70th quantile of NYSE-trade stocks. Large stocks have market

capitalizations above the 70th quantile of NYSE traded stocks. NYSE market capitalization

quantiles are from Ken French’s monthly size deciles break-point data file.
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3.2 Expected Return Estimates

I evaluate the relationship between characteristic interactions and the cross-section of

expected returns by comparing stocks’ realized returns to out-of-sample estimates of stocks’

expected returns built with the 3,655 characteristic interactions and the Fama-Macbeth

Envelope model. I use the procedure from Lewellen (2015) to construct out-of-sample

estimates of stocks’ expected returns. I form stocks’ expected return estimates for month t

in three steps. First, I use the PER model to run cross-sectional regressions of stock returns

on characteristic interactions for months s ∈ t− 120, ..., t− 1. The specification equation for

the month s cross-sectional PER regression is

ri,s = as +
J∑

j1,j2,j1 6=j2
bs,j1,j2xi,s,j1,j2 + ei,s (10)

where xi,s,j1,j2 is the cross-sectionally standardized interaction of characteristics j1 and j2

for firm i. Second, I estimate each month t slope b̂t,j1,j2 with

b̂t,j1,j2 = 1
120

∑
s

bs,j1,j2 (11)

where 1
120
∑
s bs,j1,j2 is the time-series average of past bs,j1,j2 slopes. Third, I create month t

expected return estimates with

r̂i,t =
J∑

j1,j2,j1 6=j2
b̂t,j1,j2xi,t,j1,j2 . (12)

Conceptually, the procedure uses the average cross-sectional relationship between charac-

teristic interactions and expected returns over the previous ten years to estimate stocks’

expected returns for month t.

The PER model’s envelope dimension, parameter K in section 2.2, is fixed at 12 for the

entire sample period. I estimate K with a three-step procedure. First, for each month t

from January 1980 to December 1989 I use a standard sequential F-test from Osten (1988)

to estimate the optimal envelope dimension, K̂t, for a PER regression of month t stock

returns on characteristic interactions. The definition of the F-test is available in appendix
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A. Second, I compute the time-series average of the monthly envelope dimension estimates,

K̄t = 1
120
∑
t K̂t, from January 1980 to December 1989. Third, I round K̄t to the nearest

integer.

3.3 Portfolios

This section uses portfolios to examine the information contained in characteristic interactions

about the cross-section of expected returns. I use the interaction-based expected return

estimates from section 3.2 to gather information from the entire collection of characteristic

interactions into a single variable suitable for building portfolios. At the end of each month,

stocks are assigned to decile portfolios according to their interaction-based expected return

estimates for the following month. The first decile portfolio holds stocks with the lowest

expected returns, and the tenth decile portfolio holds stocks with the highest expected

returns. Portfolios are constructed monthly from January 1990 to December 2018.

Table 2 reports results for decile portfolios built from sorts on the interaction-based

estimates of expected returns. The table’s portfolios include all stocks except for microcap

stocks. The table’s results show that interactions contain economically important information

about the cross-section of expected returns among both smaller stocks and larger stocks.

Panel A reports results for equal-weight portfolios. The average returns of the equal-weight

portfolios in Panel A increase smoothly from portfolio one to portfolio ten. A standard

long-short portfolio long portfolio ten and short portfolio one from the equal-weight sort has

an average monthly return of 1.24%. The t-statistic for the long-short portfolio’s average

return is 5.46. The Sharpe ratio for the long-short portfolio is 1.03. Panel B reports results

for value-weight portfolios. The average returns for the value-weight portfolios increase

from portfolio one to portfolio ten. The value-weight long-short portfolio has an average

monthly return of 0.91%. The value-weight long-short portfolio’s t-statistic is 3.75. And the

value-weight long-short portfolio’s Sharpe ratio is 0.71.

Table 3 reports results for long-short portfolios constructed from portfolios one and

ten of sorts within several market capitalization subsamples of stocks. The table also

reports results for long-short portfolios built with portfolios one and ten from decile sorts on

stocks’ estimates of their expected returns computed with the original 85 characteristics.
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The expected return estimates using the original characteristics are made with the same

procedure as the interaction-based expected return estimates, except for the procedure’s first

step. The monthly cross-sectional regressions of stock returns on the original characteristics

use OLS instead of PER.

The results in table 3 show characteristic interactions contain economically important

information about expected returns for firms of all sizes. Panel A reports the returns of

equal-weight long-short portfolios for sorts on both interaction-based estimates of expected

returns and characteristic-based estimates of expected returns. The average returns of the

equal-weight long-short portfolios for interactions and characteristics are relatively similar.

The standard deviations for the interaction long-short portfolios are about 30% less than the

standard deviations for the characteristic long-short portfolios. The Sharpe ratios for the

interaction long-short portfolios are also about 40% greater than the Sharpe ratios for the

characteristic long-short portfolios. The t-statistics for the equal-weight long-short interaction

portfolios all exceed three. Panel B reports long-short portfolios for value-weight decile

portfolios. The average returns of the value-weight long-short portfolios for the interactions

and characteristics are all positive and similar in magnitude. The standard deviations for the

interaction long-short portfolios are noticeably less than for the characteristic portfolios. The

Sharpe ratios for the interaction long-short portfolios in Panel B are about 20% greater than

the Sharpe ratios for the corresponding characteristic long-short portfolios. The t-statistics

for all of the value-weight interaction portfolios exceed three except for the large stock

long-short portfolio, which has a t-statistic of 2.70.

3.4 Multifactor regressions

Next, I examine how recent multifactor models account for the average excess returns

associated with characteristic interactions’ long-short portfolio. I report results for the all-

but-microcap characteristic interaction portfolios. I consider four specifications: the Carhart

(1997) four-factor model, Hou et al. (2015) q-factor model, Fama and French (2015) five-factor

model, and Fama and French (2015) five-factor with the winners-minus-losers factor. I run

multifactor model regressions for each of the factor models’ standard specifications. I also

run multifactor model regressions with the characteristic long-short portfolio as an additional
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factor. The former regressions directly measure how the multifactor models account for the

average returns associated with characteristic interactions. The latter regression models also

account for information present in the paper’s panel of 85 characteristics, but absent from

the multifactor models. Overall, the section’s results indicate characteristic interactions are

associated with information in the cross-section of expected returns not accounted for by

the Carhart (1997) factor model, Hou et al. (2015) factor model, Hou et al. (2015) factor

model, and the characteristic long-short portfolios.

Table 4 reports results for the multifactor regressions of the interaction long-short

portfolios’ returns on the Carhart (1997) and Hou et al. (2015) factor models. Panel A

reports results for the Carhart (1997) four-factor model. Panel A shows that the characteristic

interaction long-short equal-weight and value-weight portfolios are associated with large and

significant average risk-adjusted returns for the Carhart (1997) models. The Carhart (1997)

factor model regressions including the characteristic long-short portfolio do not substantially

affect the risk-adjusted returns of the interaction long-short portfolios. The long-short

interaction portfolio has effectively zero loadings on the market and size factors, a negative

loading on the value factor, and a positive loading on the momentum factor.

The results are similar in table4 Panel B, where results for the Hou et al. (2015) four-factor

model are reported. The interaction portfolios have significant, positive risk-adjusted returns

for the Hou et al. (2015) factor model. Including the characteristic long-short portfolios as

additional factors reduce the interaction portfolios’ risk-adjusted returns, but the interaction

portfolios’ risk-adjusted returns are still large, positive, and significant. The equal-weight

and value-weight long-short interaction portfolios do not load on the market equity factor

in a consistent manner across the regressions. The long-short interaction portfolios’ load

negatively on the investment factor and load positively on the return-on-equity factor. The

loadings on the investment and return-on-equity factors are not significant for three of the

four included regressions.

Table 5 reports results for the multifactor regressions of the interaction long-short

portfolios’ returns on the Fama and French (2015) five-factor model and Fama and French

(2015) five-factor model with the winners-minus-losers factor. Panel A shows that the

interaction long-short portfolios have positive, significant risk-adjusted returns for the Fama
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and French (2015) five-factor model. The interaction portfolios have negative loadings on

the market factor, negative and significant loadings on the value factor, negative loadings

on the profitability factor, and positive loadings on the investment factor. Including the

characteristic long-short portfolio in the Fama and French (2015) five-factor model regression

reduces the average risk-adjusted returns of the interaction long-short portfolios. However,

the interaction portfolios still accrue relatively large and significant risk-adjusted returns.

Table 5 Panel B reports results for the multifactor regression of the interaction long-short

portfolios’ returns on the Fama and French (2015) five-factor model plus the winners-minus-

losers momentum factor. The interaction long-short portfolios have positive, significant

returns after adding the momentum factor to the five-factor model. The most material change

when including the momentum factor in the Fama and French (2015) specification are the

changes in the value and investment factor loadings. After including the momentum factor,

the value factor loadings are reduced towards zero and are no longer significantly different

from zero. The investment factor loadings also decrease slightly, but their significance does

not change. The long-short interaction portfolios’ returns have positive and significant

loadings on the momentum factor. Adding the characteristic long-short portfolios to the

multifactor regressions results in a roughly 0.15 percentage point decrease in the interaction

portfolios’ risk-adjusted returns.

3.5 Cross-sectional Regressions

This section uses statistics from cross-sectional regressions of realized returns on the

interaction-based estimates of expected returns to evaluate characteristic interactions’ infor-

mation about the cross-section of expected returns. Table 6 reports results for Fama-Macbeth

regressions of stock returns on four different expected return estimates. The first two expected

return estimates are the interaction-based estimates and characteristic-based estimates. The

third expected return estimate averages each stock’s interaction- and characteristic- based es-

timates. Each averaged expected return estimate is r̂averagei,t = (1/2)r̂interacti,t + (1/2)r̂characteri,t .

The fourth expected return estimate is a combination forecast using the interaction- and

characteristic-based estimates. Each combination expected return estimate is r̂comboi,t =

θ̄interactt−120,t−1r̂
interact
i,t + θ̄charactert−120,t−1r̂

character
i,t where θ̄interactt−120,t−1 and θ̄charactert−120,t−1 are time-series aver-
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ages of slopes from cross-sectional regressions of stock returns on the both the interaction-

and characteristic-based expected returns for the periods t− 120, ..., t− 1. All of the Fama–

Macbeth regressions uses the 1990 to 2017 sample except the regressions of returns on the

combination expected return estimates, which use the 2000-2017 sample.

Column one from table 6 reports the slopes from Fama–Macbeth regressions of stock

returns on the interaction-based expected return estimates. Column one shows a positive and

significant relationship between realized stock returns and the interaction-based expected

return estimates across stocks of all sizes. Since column one slopes are from Fama-Macbeth

regressions of realized returns on expected return estimates, the slopes also measure how

the expected return estimates vary cross-sectionally relative to realized returns (Lewellen,

2015). Since each panel’s slope is between zero and one the interaction-based expected

return estimates vary somewhat more cross-sectionally than realized returns.

Column two from table 6 reports the slopes from Fama–Macbeth regressions of stock re-

turns on the characteristic-based expected return estimates. The slopes for the characteristic-

based expected returns are positive and significant for most of the panels. The slope is

positive but not significant for the large stock sample. Since column two slopes are also

from Fama-Macbeth regressions of realized returns on expected return estimates, the slopes

measure how the expected return estimates vary cross-sectionally relative to realized returns.

The slopes are all between zero and one, which means the characteristic-based expected

return estimates vary more than realized returns.

Column three from table 6 reports the slopes from Fama–Macbeth regressions of stock

returns on both the interaction- and characteristic-based expected return estimates. The

regression slopes measure each expected return estimate’s incremental information about

realized returns. All of the column three slopes for the interaction-based expected return

estimates are positive and significant. The column three slopes for the characteristic-based

expected return estimates are also positive and significant except for the large stock sample

slope in Panel B. The column three results show both characteristic interactions and the

original characteristics contain incremental information about expected returns.

Columns four from table 6 reports the slopes from Fama–Macbeth regressions of stock

returns on the averaged interaction and characteristic expected return estimates. The
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averaged expected return estimates tell us whether the interaction- and characteristic-

based expected return estimates are collectively better than the individual interaction- and

characteristic-based expected return estimates. The slopes in column four are all positive

and significant. Additionally, the slopes are consistently closer to one than the univariate

interaction and characteristic slopes reported in columns one and two. This result says the

averaged expected return estimates’ cross-sectional variance better tracks realized returns’

cross-sectional variance than the interaction and characteristic expected return estimates’

cross-sectional variance.

Column five from table 6 reports the slopes from Fama–Macbeth regressions of stock

returns on combination forecasts of stock returns using both the interaction and characteristic

expected return estimates. The combination forecasts also tell us how well the interaction- and

characteristic-based expected return estimates complement one another. The combination

forecast slopes are positive and significant for all samples except the large stock sample,

which has a positive but not significant coefficient. Additionally, the combination forecast

slopes are consistently closer to one than the univariate interaction and characteristic slopes

reported in columns one and two for all panels except the large stock panel.

Overall, the results in table 6 show characteristic interactions contain information

about stocks’ expected returns and that interactions contained incremental information

about expected returns over the information present in characteristics without interactions.

Additionally, table 6 indicate information in characteristics and their interactions is com-

plementary with both collections of variables providing different information about the

cross-section of expected returns.

3.6 Fama–Macbeth Envelope Regression Slopes

This section estimates which characteristic interaction slopes contain incremental and

significant information about the cross-section of expected returns after controlling for other

characteristic interactions and the original firm characteristics. Overall, the section’s results

show roughly 100 interactions contribute incremental information to expected returns. The
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Fama–Macbeth envelope regression’s cross-sectional specification is

ri,t = at +
J∑

j1,j2,j1 6=j2
bt,j1,j2xi,t,j1,j2 +

∑
j

bt,jxi,t,j + ei,t (13)

where xi,t,j1,j2 is the standardized interaction of characteristics j1 and j2 and xi,t,j is

standardized characteristic j. The specification includes both characteristic interactions

and the original characteristics so that the interactions’ slope estimates are computed after

controlling for both other interactions and the original characteristics. The regression’s

sample period is January 1980 to December 2017.

Figure 1 reports the Fama–Macbeth envelope regression’s point estimates for the 3,655

characteristic interactions’ slopes within the sample of all stocks except microcaps. Figure

one shows positive and negative slopes are spread evenly across the interactions. Larger

slopes in absolute value concentrate somewhat more around the momentum, size, and ipo

characteristics. The prominent size interaction slopes are consistent with previous research

showing firm size influences the effect of many characteristics on the cross-section. Figure

2 reports t statistics for the interactions’ slopes. Figure 2 shows the values for the slopes

t-statistics are fairly evenly dispersed across the characteristics.

Table 7 reports statistics for the number of interactions with p-values below standard

significance levels. Panel A reports the total number of p-values below the 0.001, 0.01, and

0.05 significance levels for several different stock samples. At the 0.001 significance level

between 26 and 103 interactions are significant. At the 0.01 significance level roughly 100-200

interactions are significant. At the 0.05 level roughly 300-450 interactions are significant.

Overall, Panel A shows many characteristic interactions have slopes that are significantly

different from zero at standard significance levels.

Table 7 Panel B reports the total number of interactions with p-values below a given

significance level minus the number of expected type-I errors at the same significance level.

For the 0.001, 0.01, and 0.05 significance levels the number of expected type-I errors is

4, 37, and 183, respectively. Panel B shows many more interactions have slopes that are

significantly different from zero at each of the significance than could be accounted for by

type-I errors alone.
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Table 7 Panel C reports the percent of interactions with p-values below a given significance

level at the given significance levels. Panel C is another way of comparing the number of

significant interactions to the number of expected type-I errors. A percent greater than

a significance level shows more interactions have significant slopes at the given level than

would be produced by type-I errors. The percent of significant interactions at each given

level is much greater than the significance levels themselves.

Table 8 reports each characteristic’s number of interactions with p-values less than 0.01.

Each row reports interaction counts for one characteristic. Each column reports results for a

particular sample of stocks. For instance, the “2” in the absacc row and all stock column

means two interactions with the absacc characteristic have p-values below 0.01. The table’s

results show all characteristics are associated with at least one significant interaction and

that significant interactions are generally dispersed across the 85 characteristics. A few

characteristics like baspread, eps, ipo, and returnvol are associated with more significant

interactions than other characteristics.

Table 9 presents p-values for a statistical test of whether or not a characteristic produces at

least one interaction with a non-zero slope. The test provides a formal means of determining

which characteristics produce interactions with non-zero slopes. For characteristic j1 the

test’s null hypothesis is

H0 : bj1,j2 = 0 for all j2 (14)

and the test’s alternative hypothesis is

H1 : bj1,j2 6= 0 for some j2. (15)

The test statistic itself is a Wald test given by

W = b′j1Σ−1
bj1

bj1 (16)

where bj1 is a vector of the modified Fama-Macbeth regression time-series average slopes

for interactions including characteristic j1 and Σbj1
is the time-series covariance matrix of

the cross-sectional slopes in bj1 . The test-statistic generalizes the standard Fama–Macbeth
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regression test of whether or not one slope is significantly different from zero.

Table 9 shows many characteristics are associated with at least one interaction variable

whose slope is significantly different from zero. Most characteristics have at least one

significant interaction among the all stock, all-but-micro, and small stock samples. A

substantial number of characteristics have at least one significant interaction for the large

and midcap stock samples. Overall, the table’s results say most characteristics generate

interactions’ with incremental information about the cross-section of expected returns.

3.7 Robustness

This section examines the effect of the Fama–Macbeth Envelope model’s envelope dimension

on the paper’s results. The envelope’s dimension controls the number of variables the

model uses to summarize the covariance between a cross-section of stock returns and

characteristics. Overall, the section shows the paper’s results are robust to the envelope

dimension’s specification. Envelopes with dimensions from one to twenty produce similar

outcomes for the paper’s main results. Envelope dimension values around the main results’

envelope dimension estimate of 12 are typically somewhat stronger than results for lower

envelope dimension values. Envelopes with smaller dimensions still capture economically

significant variation in stock returns.

Table 10 reports a summary of the returns for long-short portfolios built with interaction-

based expected return estimates and envelope dimensions ranging from one to twenty. The

long-short portfolios are equally weighted and built in the same manner as the long-short

portfolios in section 3.3. All of the long-short portfolios for envelope dimensions near twelve

have similar returns, t-statistics, standard deviations, and Sharpe ratios. All of the envelope

dimension’ long-short portfolios have positive and significant average returns.

Table 11 reports risk-adjusted returns for the long-short portfolios with varying envelope

dimensions. Risk-adjusted returns are reported for the following factor models: Carhart

(1997) four-factor model (C4), Hou et al. (2015) q-factor model (HXZ4), Fama and French

(2015) five-factor model (FF5), and Fama and French (2015) five-factor model plus WML

(FF5 + WML). All of the envelope dimensions’ long-short portfolios exhibit positive and

significant risk-adjusted returns of across the factor models.
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Table 12 reports Fama–Macbeth regressions of stock returns on both interaction and

characteristic estimates of expected returns for a range of envelope values. Each row

reports results for an interaction-based estimate of expected returns with a given envelope

dimension. The characteristic-based expected return estimates are constant. The table shows

characteristic interactions contribute incremental information to expected return estimates

for envelopes with dimensions ranging from one to twenty. The characteristic-based expected

return slopes are also positive and significant, meaning the characteristics contain some

information not present in the interactions. The table’s results also show that interactions

and characteristics provide complimentary information across many envelope specifications.

Table 13 reports Fama–Macbeth regressions of stock returns on the interaction-based

out-of-sample expected return estimates for envelope dimensions ranging from one to twenty.

The table shows characteristics’ interactions are a robust source of information about the

cross-section of stock returns. Estimates for all of the envelope specifications are positively

and significantly related to realized returns. The table also shows the expected return

estimates vary somewhat more than than realized returns. Larger envelopes’ estimates

include somewhat more excess variation than smaller envelopes’ estimates.

4 Conclusion

I estimate the effect of 3,665 characteristic interactions on stock returns with a Fama–Macbeth

regression modified to accommodate cross-sections with more variables than observations.

The modified Fama–Macbeth regression adds a collection of constraints, called an envelope,

to the Fama-Macbeth procedure’s cross-sectional regression model. The resulting cross-

sectional model estimates the same slopes as the standard least squares model, provided the

model’s variables proxy for stocks’ loadings for some factor model with less factors than the

model’s number of observations.

I find characteristic interactions are an important source of information about expected

returns. A standard long-short portfolio constructed with out-of-sample estimates of stocks’

interaction-based expected returns has a Sharpe ratio of 3.90. Characteristic interactions

and characteristics are complimentary sources of information about expected returns. About
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100 characteristic interactions have significant, incremental information about expected

returns. The paper’s results are robust to the specification of the envelope’s dimension.

The robustness results also indicate the proposed procedure for estimating the modified

Fama-Macbeth regression’s envelope dimension performs well.
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5 Tables and Figures

Table 1: This table reports the firm characteristics included in the paper’s empirical results. The table also reports abbreviations and
references for the firm characteristics.

Abbreviation Firm characteristic Reference

absacc Absolute accruals Bandyopadhyay et al. (2010)
acc Working capital accruals Sloan (1996)
age Years since first compustat coverage Jiang et al. (2005)
agr Asset growth Cooper et al. (2008)
ame Asset to market Bhandari (1988)
ato Asset turnover Soliman (2008)
baspread Bid ask spread Amihud and Mendelson (1989)
beta Market beta Fama and MacBeth (1973)
betasq Market beta squared Fama and MacBeth (1973)
bm Book to market Barr Rosenberg and Lanstein (1984)
bmia Book to market, industry adjusted Asness et al. (2000)
cash Cash to assets Palazzo (2012)
cashdebt Cash to debt Ou and Penman (1989)
cashpr Cash productivity S. and Rao (2009)
cfp Operating cash flow to price Desai et al. (2004)
cfpia Operating cash flow to price, industry adjusted Asness et al. (2000)
chatoia Change in operating cash flow to price, industry adjusted Soliman (2008)
chcsho Change in common stock shares outstanding Pontiff and Woodgate (2008)
chempia Change in employees, industry adjusted Asness et al. (2000)
chibqsup Change in earnings surprise Thomas and Zhang (2011)
chinv Change in inventory Thomas and Zhang (2002)
chmom Change in 6-month momentum Gettlemen and Marks (2006)
chpmia Change in profit margin, industry adjusted Soliman (2008)
chsaleqsup Change in sales surprise Thomas and Zhang (2011)
chtx Change in tax expense Thomas and Zhang (2011)
cinvest Corporate investment Titman et al. (2004)
convind Convertible debt indicator Valta (2016)
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Table 1: (continued)

Abbreviation Firm characteristic Reference

cto Capital turnover Haugen et al. (1996)
currat Current ratio Ou and Penman (1989)
debtp Debt to price Gorodnichenko and Weber (2016)
depr Depreciation to plants, property, and equipment Holthausen and Larcker (1992)
divi Dividend initiation indicator Michaely et al. (1995)
divo Dividend omission indicator Michaely et al. (1995)
dolvol Dollar trading volume Chordia et al. (2001)
dpchgam_pchsale Change in percent gross margin change less percent sales change Abarbanell and Bushee (1998a)
dpia Change in plants, property, and equipment plus inventory over assets Lyandres et al. (2008)
dso Log change in shares outstanding Pontiff and Woodgate (2008)
durind Indicator for members of durable goods industries Sharpe (1994)
dy Dividend to price Litzenberger and Ramaswamy (1982)
egr Growth in shareholder equity Richardson et al. (2005)
ep Earnings to price Basu (1977)
eps Earnings per share Basu (1977)
gma Gross profitability Novy-Marx (2013)
gnpcorr Correlation between GNP percent change and sales percent change Sharpe (1994)
grcapx Growth in capital expenditures Anderson and Garcia-Feijóo (2006)
grltnoa Growth in long-term net operating assets Fairfield et al. (2003)
herf Industry sales concentration Hou and Robinson (2006)
hire Employee growth rate Belo et al. (2014)
ill Illiquidity Amihud (2002)
indmom Industry momentum Moskowitz and Grinblatt (1999)
invest Capital expenditures and inventory Chen and Zhang (2010)
ipo Initial public offering Loughran and Ritter (1995)
lev Leverage Bhandari (1988)
lgr Growth in long-term debt Richardson et al. (2005)
maxret Max daily return in previous month Bali et al. (2011)
mom12m 12-month momentum Jegadeesh (1990)
mom1m 1-month momentum Jegadeesh and Titman (1993)
mom36m 36-month momentum Jegadeesh and Titman (1993)
mom6m 6-month momentum Jegadeesh and Titman (1993)

33



Table 1: (continued)

Abbreviation Firm characteristic Reference

mve Market value of equity Banz (1981)
mveia Market value of equity, industry adjusted Asness et al. (2000)
nincr Number of earnings consecutive earnings increases over past 8 quarters Barth et al. (1999)
noa Net operating assets Hirshleifer et al. (2004)
ol Operating leverage Novy-Marx (2010)
operprof Operating profitability Fama and French (2015)
pchcapxia Percent change in capital expenditures, industry adjusted Abarbanell and Bushee (1998b)
pchcurrat Percent change in current ratio Ou and Penman (1989)
pchdepr Percent change in depreciation Holthausen and Larcker (1992)
pcheq Percent change in book equity Haugen et al. (1996)
pchgm_pchsale Percent change in gross profit margin less percent change in sales Abarbanell and Bushee (1998a)
pchquick Percent change in quick ratio Ou and Penman (1989)
pchsale_pchinvt Percent change in sales less percent change in inventory Abarbanell and Bushee (1998a)
pchsale_pchrect Percent change in sales less percent change in receivables Abarbanell and Bushee (1998a)
pchsale_pchxsga Percent change in sales less percent change in selling and general administration expense Abarbanell and Bushee (1998a)
pchsaleinv Percent change in sales to inventory Ou and Penman (1989)
pctacc Percent accruals Hafzalla et al. (2011)
pm Price to cost Soliman (2008)
pmia Price to cost, industry adjusted Soliman (2008)
quick Quick ratio Ou and Penman (1989)
rd Indicator equaling 1 when change in R&D expense over total assets exceeds 5% Eberhart et al. (2004)
retvol Return volatility Ang et al. (2006)
roeq Return on quarterly equity Hou et al. (2015)
roic Return on invested capital Brown and Rowe (2007)
salecash Sales to cash Ou and Penman (1989)
saleinv Sales to inventory Ou and Penman (1989)
salerec Sales to receivables Ou and Penman (1989)
secured Long-term debt to secured debt Valta (2016)
securedind Secured debt indicator Valta (2016)
sgr Sales growth Lakonishok et al. (1994)
sin Alcohol, tobacco, and gambling industry indicator Hong and Kacperczyk (2009)
tang Tangiblility ratio Almeida and Campello (2007)
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Table 1: (continued)

Abbreviation Firm characteristic Reference

turn Share turnover Chordia et al. (2001)
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Table 2: The table reports summary statistics for the excess returns of stocks sorted into decile
portfolios on out-of-sample expected returns estimated with the modified Fama–Macbeth
envelope regression model and 3,655 characteristic interactions. The out-of-sample expected
return estimates’ construction is described in section 3.2. The modified Fama–Macbeth
regression model is defined in section 2.3. The characteristic interactions’ construction is
described in section 3.1. At the end of each month, I sort stocks into deciles according to
their interaction-based expected return estimates for the following month. Next, I form
equal-weight and value-weight portfolios for each decile and hold the portfolios until the end
of the month. Sorts include all stocks except microcap stocks. Microcap stocks have market
capitalizations below the 20th quantile of NYSE-trade stocks. I compute portfolio returns
for the period of January 1990 through December 2017.

Mean t-stat. Stdev. Sharpe

Panel A. Equal weight portfolios

1 -0.02 -0.04 7.81 -0.01
2 0.53 1.78 5.48 0.34
3 0.61 2.29 4.89 0.43
4 0.70 2.76 4.64 0.52
5 0.76 3.02 4.59 0.57
6 0.86 3.37 4.66 0.64
7 0.92 3.49 4.83 0.66
8 0.98 3.54 5.06 0.67
9 1.13 3.61 5.73 0.68
10 1.22 3.14 7.13 0.59
10− 1 1.24 5.46 4.16 1.03

Panel B. Value weighted portfolios

1 0.00 -0.01 6.62 0.00
2 0.66 2.67 4.51 0.51
3 0.58 2.53 4.22 0.48
4 0.58 2.60 4.08 0.49
5 0.64 2.87 4.07 0.54
6 0.76 3.42 4.04 0.65
7 0.72 3.17 4.19 0.60
8 0.79 3.17 4.58 0.60
9 0.86 3.23 4.89 0.61
10 0.90 2.67 6.20 0.50
10− 1 0.91 3.75 4.43 0.71

36



Table 3: The table reports summary statistics for the excess returns of long-short portfolios
built from deciles portfolios formed from sorting stocks according to their interaction-based
expected return estimates for the following month. The long-short portfolios’ constructions
are standard. A long-short portfolio is long the decile portfolio holding stocks with the
highest expected return estimates and short the decile portfolio with the lowest expected
return estimates. I compute portfolio returns for the period of January 1990 through
December 2017. The all stock sample includes all stocks passing the basic data screens
in section 3.1. The all but microcaps sample omits microcap stocks, which have market
capitalizations below the 20th percentile of NYSE-traded stocks. Small stocks have market
capitalizations below the 30th quantile of NYSE-traded stocks. Midcap stocks have market
capitalizations above the 30th quantile and below the 70th quantile of NYSE-trade stocks.
Large stocks have market capitalizations above the 70th quantile of NYSE traded stocks.

Characteristic interactions Original characteristics

Mean t(Mean) Sd Sharpe Mean t(Mean) Sd Sharpe

Panel A. Equal weight long-short portfolios

All stocks 3.86 20.66 3.42 3.90 3.65 12.82 5.22 2.42
All but microcaps 1.24 5.46 4.16 1.03 1.20 3.53 6.25 0.67
Large 0.75 3.17 4.33 0.60 0.63 2.04 5.65 0.39
Medium 0.87 3.63 4.37 0.69 1.08 3.02 6.58 0.57
Small 4.48 21.07 3.89 3.98 4.40 14.59 5.53 2.76

Panel B. Value weight long-short portfolios

All stocks 1.10 3.84 5.25 0.73 1.19 3.51 6.25 0.66
All but microcaps 0.91 3.75 4.43 0.71 1.00 2.85 6.45 0.54
Large 0.60 2.70 4.09 0.51 0.65 2.06 5.77 0.39
Medium 0.87 3.59 4.46 0.68 1.07 2.94 6.69 0.56
Small 1.99 7.96 4.59 1.50 2.30 7.42 5.68 1.40
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Table 4: The table reports multifactor regressions of long-short interaction portfolios’ monthly
returns on the Carhart (1997) four-factor model and the Hou et al. (2015) four-factor model.
The table also reports multifactor regressions with the equal-weight and value-weight long-
short portfolios for the characteristic-based expected return estimates as additional factors.
The long-short portfolio constructions are standard. *, **, and *** indicate significance
at the 5%, 1%, and 0.1% levels, respectively based on heteroscedasticity t-statistics. 0.00
indicates a value less than 0.005 in absolute value. The factors are as follows: MKT = market
excess return, SMB = “small minus big” size factor, HML = “high minus low” value factor,
WML = “winner minus loser” momentum factor, CHAREW = long-short portfolio from
equal-weight, decile sort on characteristic-based estimates of expected returns, CHARVW
= long-short portfolio from value-weight, decile sort on characteristic-based estimates of
expected returns, ME = market equity factor, IA = investment factor, ROE = return on
equity factor.

Equal weight Value weight

Panel A. Carhart (1997) four-factor model

α (%) 0.95∗∗∗ 0.74∗∗∗ 0.85∗∗∗ 0.75∗∗

MKT −0.02 0.00 −0.02 −0.02
SMB 0.09 0.02 −0.04 −0.14
HML −0.01 −0.06 −0.300∗∗ −0.288∗

WML 0.62∗∗∗ 0.27∗∗∗ 0.34∗∗∗ 0.13
CHAREW 0.32∗∗∗

CHARVW 0.21∗∗

R2 (%) 52.86 60.05 20.12 24.11

Panel C. Hou et al. (2015) four factor model

α (%) 1.01∗∗∗ 0.66∗∗∗ 1.00∗∗∗ 0.78∗∗

MKT −0.11 −0.01 −0.11 −0.06
ME 0.34 0.03 0.07 −0.19
IA −0.06 −0.03 −0.36 ∗ −0.25
ROE 0.52∗∗∗ 0.02 0.17 −0.05
CHAREW 0.49∗∗∗ 0.32∗∗∗

CHARVW
R2 (%) 15.34 56.57 3.79 21.31
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Table 5: The table reports multifactor regressions of long-short interaction portfolios’ monthly
returns on the Fama and French (2015) five factor model and Fama and French (2015)
five factor model plus the WML factor. The table also reports multifactor regressions
including the equal-weight and value-weight long-short portfolios for the characteristic-based
expected return estimates as additional factors. The long-short interaction portfolio is long
the tenth decile and short the first decile of all stocks but microcaps sorted according to
their interaction-based expected return estimates. *, **, and *** indicate significance at the
5%, 1%, and 0.1% levels, respectively based on heteroscedasticity t-statistics. 0.00 indicates
a value less than 0.005 in absolute value. The factors are as follows: MKT = market
excess return, SMB = “small minus big” size factor, HML = “high minus low” value factor,
RMW = “robust minus weak” profitability factor, “CMA” = “conservative minus aggressive”
investment factor, WML = “winner minus loser” momentum factor, CHAREW = long-short
portfolio from equal-weight, decile sort on characteristic-based estimates of expected returns,
CHARVW = long-short portfolio from value-weight, decile sort on characteristic-based
estimates of expected returns.

Equal weight Value weight

Panel A. Fama and French (2015) five factor model

α (%) 1.32∗∗∗ 0.73∗∗∗ 1.12∗∗∗ 0.81∗∗∗

MKT −0.16 −0.01 −0.13 −0.06
SMB 0.11 −0.07 −0.04 −0.18
HML −0.50 ∗∗∗ −0.21 ∗∗ −0.46 ∗∗∗ −0.28
RMW 0.00 −0.16 −0.06 −0.05
CMA 0.60∗∗ 0.28∗ 0.12 −0.04
CHAREW 0.49∗∗∗

CHARVW 0.28∗∗∗

R2 (%) 12.59 58.85 8.69 23.25

Panel B. Fama and French (2015) five factor model with WML factor

α (%) 0.97∗∗∗ 0.78∗∗∗ 0.92∗∗∗ 0.81∗∗∗

MKT −0.01 0.00 −0.05 −0.05
SMB 0.01 −0.05 −0.09 −0.17
HML −0.12 −0.14 −0.25 −0.24
RMW −0.17 −0.18 −0.15 −0.09
CMA 0.31∗∗ 0.26∗ −0.04 −0.07
WML 0.61∗∗∗ 0.27∗∗∗ 0.34∗∗∗ 0.15
CHAREW 0.32∗∗∗

CHARVW 0.20∗∗

R2 (%) 54.93 61.80 20.61 24.27
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Table 6: Fama-Macbeth regressions of stock returns on interaction-based expected return
estimates, characteristic-based expected return estimates, averaged interaction and character-
istic expected return estimates, and combination expected return estimates. r̂interacti,t is the
interaction-based expected return estimates. r̂characteri,t is the characteristic-based expected
return estimates. r̂averagei,t = (1/2)r̂interacti,t + (1/2)r̂characteri,t is the averaged expected return
estimate. r̂comboi,t = θ̄interactt−120,t−1r̂

interact
i,t + θ̄charactert−120,t−1r̂

character
i,t where θ̄interactt−120,t−1 and θ̄charactert−120,t−1 are

time series averages of the slopes from cross-sectional regressions of stock returns on the
two expected return estimates for the periods t − 120, ..., t − 1. *, **, and *** indicate
significance at the 5%, 1%, and 0.1% levels. Regressions use the all-but-microcap sample of
stocks.

(1) (2) (3) (4) (5)

Panel A. All but microcaps

r̂interacti,t 0.31∗∗∗ 0.24∗∗∗

r̂characteri,t 0.38∗∗∗ 0.27∗∗

r̂averagei,t 0.51∗∗∗

r̂comboi,t 0.81∗∗∗

Avg. R2 0.71 1.53 1.90 1.34 1.36

Panel B. Large

r̂interacti,t 0.23∗∗ 0.19∗

r̂characteri,t 0.23 0.20
r̂averagei,t 0.36∗∗

r̂comboi,t 0.25
Avg. R2 1.08 1.91 2.66 1.79 1.65

Panel C. Medium

r̂interacti,t 0.27∗∗∗ 0.22∗∗∗

r̂characteri,t 0.34∗∗∗ 0.27∗∗

r̂averagei,t 0.48∗∗∗

r̂comboi,t 0.97∗

Avg. R2 0.80 1.68 2.17 1.54 1.47

Panel D. Small

r̂interacti,t 0.58∗∗∗ 0.45∗∗∗

r̂characteri,t 0.71∗∗∗ 0.46∗∗∗

r̂averagei,t 0.90∗∗∗

r̂comboi,t 0.84∗∗∗

Avg. R2 0.71 0.80 1.25 1.02 1.09
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Figure 1: Characteristic interaction slopes from a Fama–Macbeth envelope regression of stock
returns on 3,655 characteristic interactions and 85 original characteristics. The modified
Fama–Macbeth envelope regression model is defined in 2.3. Each square represents the
slope for an interaction generated by two characteristics. The color gradient representing
interactions’ slope values ranges from red for slopes above 0.03 to blue for slopes below
-0.03. Lighter shades of red and blue represent intermediate slope values. Slopes equal to
zero are represented by white. The sample period is January 1980 to December 2017. The
Fama-Macbeth envelope regression includes all stocks except microcap stocks.
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Figure 2: t-statistics for characteristic interaction slopes from a Fama–Macbeth envelope
regression of stock returns 85 characteristics and the characteristics’ 3,655 interactions. The
modified Fama–Macbeth envelope regression model is defined in 2.3. The interactions and
characteristics are defined in section 3.1. Each square represents the t-statistic for the
slope of an interaction generated by two characteristics. The color gradient representing
interactions’ average slope values ranges from red for slopes above 0.03 to blue for slopes
below -0.03. Lighter shades of red and blue represent intermediate slope values. The sample
period is January 1980 to December 2017. The Fama-Macbeth envelope regression includes
all stocks except microcap stocks.
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Table 7: Total p-values below a given significance level for interaction slopes from a
modified Fama–Macbeth regression of stock returns on 3,655 interactions and 85 original
firm characteristics. The modified Fama–Macbeth envelope regression model is defined in
2.3. The interactions and characteristics are defined in section 3.1. The interaction slopes
are time-series averages of the Fama–Macbeth envelope regression model’s cross-sectional
regressions of stock returns on characteristics and characteristic interactions. Each row
reports the number of p-values below a standard significance level. Each column reports
results for a specific stock sample.

All
stocks

All-but-
microcaps

Large Medium Small

Panel A. Total p-values below significance level
p-value < 0.001 103 51 26 34 93
p-value < 0.01 207 154 88 99 196
p-value < 0.05 442 384 282 294 441

Panel B. Total p-values below significance level less expected type-I errors
p-value < 0.001 99 47 22 30 89
p-value < 0.01 170 117 51 62 159
p-value < 0.05 259 201 99 111 258

Panel C. Percent p-values below significance level
p-value < 0.001 2.82 1.4 0.71 0.93 2.54
p-value < 0.01 5.66 4.21 2.41 2.71 5.36
p-value < 0.05 12.09 10.51 7.72 8.04 12.07
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Table 8: Each characteristic’s number of interaction slopes with p-values < 0.01. Interaction slopes
and p-values are from Fama–Macbeth envelope regressions of stock returns on 85 characteristics and the
characteristics’ 3,655 interactions. The Fama–Macbeth envelope regression model is defined in 2.3. The
interactions and characteristics are defined in section 3.1. Each row reports the number of slopes with
p-values below 0.01 for a given characteristic’s interactions. Each column reports results for a specific stock
sample.

.

All stock All-but-
micro

Large Medium Small

absacc 2 2 2 0 2
acc 3 4 2 3 7
age 8 6 2 3 3
agr 5 4 5 4 5
ame 5 4 2 2 6
ato 0 0 2 1 0
baspread 12 6 2 5 11
beta 5 3 3 0 2
betasq 3 1 1 1 4
bm 11 5 2 4 6
bmia 0 0 0 2 2
cash 11 9 8 1 11
cashdebt 3 5 2 2 3
cashpr 3 1 0 0 1
chatoia 3 2 0 0 4
chcsho 3 1 3 0 4
chempia 0 3 0 1 0
chibqsup 3 1 1 1 3
chinv 1 1 0 5 1
chmom 9 6 9 8 7
chpmiaia 3 1 2 0 1
chsaleqsup 4 4 1 0 4
chtx 3 3 1 0 3
cinvest 2 3 4 2 2
convind 2 1 1 1 1
cto 1 2 1 0 2
currat 4 1 1 2 4
debtp 4 6 5 3 3
depr 0 1 0 1 0
divi 0 1 2 3 1
divo 7 5 1 3 8
dolvol 7 5 2 6 11
dpchgm_pchsale 0 0 1 0 2
dpia 2 4 3 2 2
dso 0 3 1 1 1
durind 4 3 1 2 3
dy 1 4 2 1 1
egr 2 0 1 1 2
ep 6 3 2 2 8
eps 10 4 1 0 11
gma 5 4 1 2 4
gnpcorr 2 0 3 0 2
grcapx 1 1 0 2 0
grltnoa 1 3 1 0 2
herf 0 4 2 3 2
hire 1 1 0 2 1
ill 7 5 1 1 7
indmom 8 6 3 6 8
invest 1 1 1 0 2
ipo 27 18 6 8 26
lev 10 8 2 5 9
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Table 8: (continued)

All stock All-but-
micro

Large Medium Small

lgr 3 1 3 1 5
maxret 7 7 2 4 6
mom12m 13 7 2 3 11
mom1m 20 24 20 17 18
mom36m 3 2 0 0 4
mom6m 14 16 11 11 12
mve 18 11 2 2 16
mveia 14 3 0 1 11
nincr 9 5 1 5 6
noa 5 3 3 3 6
ol 3 1 0 2 2
operprof 4 2 1 2 4
pchcapxia 0 1 0 0 1
pchcurrat 3 1 1 0 2
pchdepr 0 1 0 0 0
pchgm_pchsale 2 3 1 1 3
pchquick 1 1 0 0 1
pchsale_pchinvt 1 1 2 1 1
pchsale_pchrect 1 1 2 0 2
pchsale_pchxsga 4 1 1 0 4
pchsaleinv 1 3 0 1 1
pctacc 3 3 3 0 0
pm 2 0 1 3 3
pmia 3 1 0 0 2
quick 4 1 1 3 3
rd 9 3 1 4 10
retvol 13 10 4 12 10
roeq 9 2 1 1 7
roic 6 2 0 3 4
salecash 2 2 4 3 2
saleinv 5 3 1 1 5
salerec 2 4 1 3 3
sgr 4 5 2 4 2
tang 3 1 2 1 4
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Table 9: p-values for tests of whether or not a given characteristic generates at least one interaction
with a slope that is significantly different from zero. The interaction slopes are from a Fama–Macbeth
envelope regressions of monthly stock returns on 85 characteristics and their 3,655 interactions. The modified
Fama–Macbeth envelope regression model is defined in 2.3. The interactions and characteristics are defined
in section 3.1. Each row reports p-values for tests of a given characteristic. For characteristic i the test’s
null hypothesis is H0 : bi,j = 0 for all j = 1, ..., J where bi,j is the Fama–Macbeth regression slope for
the interaction of characteristics i and j. The test’s alternative hypothesis is H1 : bi,j 6= 0. The test is
implemented with a Wald statistic defined in section 3.6. The test statistic is a generalization of the standard
Fama-Macbeth t-test to hypotheses involving several slopes.

All stock All-but-
micro

Large Medium Small

absacc 0.000 0.004 0.000 0.123 0.000
acc 0.000 0.000 0.000 0.001 0.000
age 0.000 0.000 0.002 0.000 0.000
agr 0.000 0.000 0.002 0.008 0.000
ame 0.000 0.000 0.002 0.003 0.000
ato 0.024 0.013 0.008 0.149 0.038
baspread 0.000 0.000 0.020 0.000 0.000
beta 0.000 0.000 0.133 0.063 0.000
betasq 0.000 0.001 0.301 0.086 0.000
bm 0.000 0.000 0.003 0.000 0.000
bmia 0.003 0.560 0.048 0.041 0.000
cash 0.000 0.000 0.000 0.115 0.000
cashdebt 0.000 0.000 0.011 0.181 0.000
cashpr 0.000 0.077 0.009 0.419 0.000
chatoia 0.001 0.001 0.125 0.091 0.001
chcsho 0.001 0.257 0.001 0.772 0.000
chempia 0.312 0.000 0.155 0.009 0.454
chibqsup 0.000 0.002 0.765 0.554 0.000
chinv 0.004 0.000 0.181 0.000 0.000
chmom 0.000 0.000 0.000 0.000 0.000
chpmiaia 0.063 0.020 0.094 0.195 0.221
chsaleqsup 0.000 0.013 0.004 0.006 0.000
chtx 0.000 0.002 0.241 0.160 0.000
cinvest 0.000 0.000 0.000 0.001 0.000
convind 0.010 0.089 0.080 0.013 0.016
cto 0.000 0.022 0.195 0.001 0.003
currat 0.000 0.001 0.096 0.039 0.000
debtp 0.000 0.000 0.000 0.000 0.000
depr 0.039 0.059 0.067 0.227 0.020
divi 0.011 0.007 0.048 0.001 0.002
divo 0.000 0.000 0.000 0.000 0.000
dolvol 0.000 0.000 0.000 0.009 0.000
dpchgm_pchsale 0.145 0.866 0.063 0.333 0.334
dpia 0.000 0.000 0.000 0.216 0.000
dso 0.099 0.000 0.006 0.132 0.027
durind 0.000 0.000 0.464 0.001 0.000
dy 0.000 0.000 0.000 0.056 0.003
egr 0.005 0.003 0.015 0.096 0.000
ep 0.000 0.000 0.039 0.017 0.000
eps 0.000 0.000 0.002 0.420 0.000
gma 0.000 0.000 0.000 0.001 0.000
gnpcorr 0.001 0.280 0.086 0.021 0.007
grcapx 0.065 0.231 0.415 0.000 0.092
grltnoa 0.000 0.001 0.163 0.026 0.000
herf 0.008 0.000 0.008 0.003 0.000
hire 0.244 0.025 0.190 0.016 0.214
ill 0.000 0.000 0.041 0.019 0.000
indmom 0.000 0.000 0.105 0.002 0.000
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Table 9: (continued)

All stock All-but-
micro

Large Medium Small

invest 0.000 0.174 0.000 0.146 0.000
ipo 0.000 0.000 0.000 0.000 0.000
lev 0.000 0.000 0.000 0.000 0.000
lgr 0.000 0.074 0.006 0.046 0.000
maxret 0.000 0.000 0.001 0.000 0.000
mom12m 0.000 0.000 0.000 0.000 0.000
mom1m 0.000 0.000 0.000 0.000 0.000
mom36m 0.000 0.021 0.007 0.391 0.000
mom6m 0.000 0.000 0.000 0.000 0.000
mve 0.000 0.000 0.011 0.001 0.000
mveia 0.000 0.000 0.001 0.114 0.000
nincr 0.000 0.000 0.254 0.000 0.000
noa 0.000 0.000 0.003 0.002 0.000
ol 0.001 0.104 0.335 0.000 0.000
operprof 0.000 0.066 0.013 0.007 0.000
pchcapxia 0.010 0.633 0.894 0.109 0.016
pchcurrat 0.005 0.017 0.005 0.029 0.012
pchdepr 0.092 0.224 0.026 0.118 0.262
pchgm_pchsale 0.000 0.043 0.234 0.463 0.000
pchquick 0.246 0.095 0.001 0.003 0.131
pchsale_pchinvt 0.009 0.032 0.034 0.046 0.000
pchsale_pchrect 0.089 0.049 0.026 0.031 0.002
pchsale_pchxsga 0.000 0.397 0.194 0.589 0.000
pchsaleinv 0.000 0.000 0.076 0.023 0.000
pctacc 0.001 0.125 0.009 0.489 0.004
pm 0.000 0.000 0.041 0.000 0.000
pmia 0.002 0.255 0.222 0.204 0.000
quick 0.000 0.004 0.319 0.005 0.000
rd 0.000 0.000 0.003 0.000 0.000
retvol 0.000 0.000 0.000 0.000 0.000
roeq 0.000 0.001 0.137 0.005 0.000
roic 0.000 0.001 0.103 0.000 0.000
salecash 0.000 0.000 0.000 0.000 0.000
saleinv 0.000 0.040 0.042 0.008 0.000
salerec 0.000 0.000 0.073 0.000 0.000
sgr 0.000 0.000 0.016 0.040 0.000
tang 0.001 0.000 0.013 0.010 0.000
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Table 10: Summary statistics for the excess returns of long-short portfolios made with decile
sorts on interaction-based expected return estimates and envelope dimensions ranging from
one to twenty. The interaction-based expected return estimates are made with the procedure
in section 3.2. The estimation procedure uses the Fama-Macbeth envelope regression
model from section 2.3 to estimate the average cross-sectional relationship between 3,655
interactions and stock returns. The Fama-Macbeth envelope regression’s envelope dimension
is a tuning parameter, which controls the number of repackaged variables the model uses
to represent cross-sectional information in the original variables about expected returns.
Returns are reported in monthly percentage points. The long-short portfolio’s associated
decile portfolios are equally-weighted. The sample includes all stocks except microcap stocks.

Envelope Mean t(Mean) Sd. Sharpe

1 1.08 3.75 5.26 0.71
2 1.14 3.94 5.32 0.75
3 1.17 3.97 5.39 0.75
4 1.17 4.11 5.24 0.78
5 1.24 4.51 5.03 0.85
6 1.23 4.50 5.00 0.85
7 1.22 4.71 4.74 0.89
8 1.23 4.88 4.63 0.92
9 1.22 4.91 4.56 0.93
10 1.18 4.86 4.47 0.92
11 1.23 5.24 4.30 0.99
12 1.24 5.46 4.16 1.03
13 1.25 5.66 4.06 1.07
14 1.22 5.54 4.05 1.05
15 1.19 5.45 4.00 1.03
16 1.16 5.41 3.94 1.02
17 1.10 5.30 3.79 1.00
18 1.07 5.24 3.74 0.99
19 1.07 5.29 3.70 1.00
20 1.07 5.33 3.68 1.01
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Table 11: Average risk-adjusted returns for long-short portfolios made with decile sorts
on interaction-based expected return estimates and envelope dimensions ranging from one
to twenty. The interaction-based expected return estimates are made with the procedure
in section 3.2. The estimation procedure uses the Fama-Macbeth envelope regression
model from section 2.3 to estimate the average cross-sectional relationship between 3,655
interactions and stock returns. The Fama-Macbeth envelope regression’s envelope dimension
is a tuning parameter, which controls the number of repackaged variables the model uses
to represent cross-sectional information in the original variables about expected returns.
Average risk-adjusted returns are reported for regressions of the long-short portfolios’ excess
returns on standard multifactor models for the cross-section of expected returns. The
included factor models are the Carhart (1997) four-factor model (C4), the Hou et al. (2015)
q-factor model (HXZ4), the Fama and French (2015) five-factor model (FF5), and the Fama
and French (2015) five-factor model plus WML (FF5 + WML). The average risk-adjusted
returns’ t−statistics use heteroscedasticity robust standard errors. The long-short portfolios
are made with equally weighted decile portfolios and all stocks except microcap stocks.

C4 HXZ4 FF5 FF5 + WML
Envelope α t(α) α t(α) α t(α) α t(α)

1 0.83 5.31 0.90 3.82 1.15 4.87 0.87 5.16
2 0.82 5.25 0.88 3.70 1.15 4.85 0.86 5.15
3 0.82 5.21 0.88 3.69 1.15 4.77 0.86 5.06
4 0.85 5.34 0.92 3.77 1.19 4.92 0.89 5.27
5 0.89 5.55 0.98 3.87 1.26 5.04 0.95 5.48
6 0.91 5.73 0.98 3.93 1.28 5.06 0.95 5.60
7 0.93 5.90 1.01 3.98 1.32 5.23 0.99 5.90
8 0.95 6.13 1.03 4.18 1.32 5.31 0.97 5.97
9 0.93 5.99 0.99 3.87 1.30 5.04 0.94 5.77
10 0.90 5.65 0.96 3.65 1.28 4.73 0.90 5.34
11 0.84 5.15 0.90 3.26 1.23 4.31 0.83 4.74
12 0.86 5.17 0.92 3.28 1.25 4.28 0.85 4.67
13 0.87 5.16 0.92 3.27 1.25 4.22 0.84 4.58
14 0.83 4.99 0.87 3.04 1.23 4.08 0.80 4.41
15 0.82 4.70 0.89 2.92 1.24 3.90 0.78 4.12
16 0.82 4.67 0.92 3.00 1.24 3.91 0.78 4.10
17 0.72 3.76 0.83 2.60 1.16 3.45 0.68 3.26
18 0.70 3.53 0.80 2.47 1.14 3.35 0.64 3.05
19 0.68 3.33 0.78 2.40 1.07 3.17 0.61 2.79
20 0.64 3.05 0.87 2.69 1.07 3.46 0.67 3.13
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Table 12: Slopes from Fama-Macbeth regressions of stock returns on interaction- and
characteristic-based estimates of expected returns where the interaction-based expected
return estimates are computed with envelope dimensions from one to twenty. The interaction-
based expected return estimates are made with the procedure in section 3.2. The estimation
procedure uses the Fama-Macbeth envelope regression model from section 2.3 to estimate the
average cross-sectional relationship between 3,655 interactions and stock returns. The Fama-
Macbeth envelope regression’s envelope dimension is a tuning parameter, which controls the
number of repackaged variables the model uses to represent cross-sectional information in
the original variables about expected returns. Each row reports results for interaction-based
expected return estimates with a given envelope dimension. The sample includes all stocks
but microcap stocks.

Interaction Characteristic
Envelope Slope t-stat. Slope t-stat. R2 (%)

1 0.43 3.21 0.28 2.88 1.96
2 0.40 3.75 0.26 2.67 2.00
3 0.39 3.87 0.25 2.63 2.01
4 0.38 4.34 0.24 2.48 1.98
5 0.36 4.91 0.24 2.43 1.94
6 0.34 4.96 0.24 2.49 1.94
7 0.32 5.20 0.25 2.51 1.91
8 0.30 5.42 0.25 2.50 1.90
9 0.29 5.51 0.25 2.53 1.89
10 0.27 5.55 0.26 2.61 1.88
11 0.26 5.75 0.26 2.65 1.86
12 0.24 5.83 0.27 2.68 1.85
13 0.23 5.87 0.27 2.72 1.83
14 0.22 5.80 0.28 2.76 1.83
15 0.21 5.81 0.29 2.84 1.81
16 0.19 5.73 0.29 2.88 1.81
17 0.18 5.68 0.30 2.92 1.80
18 0.17 5.63 0.30 2.95 1.79
19 0.17 5.66 0.30 2.97 1.79
20 0.17 5.67 0.30 2.98 1.79
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Table 13: Slopes for Fama-Macbeth regressions of stock returns on out-of-sample expected
return estimates using interactions and a range of envelope dimensions. The interaction-
based expected return estimates are made with the procedure in section 3.2. The estimation
procedure uses the Fama-Macbeth envelope regression model from section 2.3 to estimate the
average cross-sectional relationship between 3,655 interactions and stock returns. The Fama-
Macbeth envelope regression’s envelope dimension is a tuning parameter, which controls the
number of repackaged variables the model uses to represent cross-sectional information in
the original variables about expected returns. Each row reports results for interaction-based
expected return estimates with a given envelope dimension. The sample includes all stocks
but microcap stocks.

Envelope Slope t-stat. R2 (%)

1 0.66 4.02 0.89
2 0.56 4.33 1.02
3 0.53 4.35 1.05
4 0.50 4.74 1.01
5 0.48 5.26 0.94
6 0.44 5.22 0.93
7 0.41 5.39 0.87
8 0.39 5.61 0.83
9 0.37 5.67 0.80
10 0.34 5.71 0.76
11 0.33 5.84 0.72
12 0.31 5.91 0.68
13 0.29 5.96 0.64
14 0.28 5.90 0.62
15 0.26 5.89 0.59
16 0.25 5.84 0.57
17 0.24 5.82 0.55
18 0.23 5.79 0.54
19 0.22 5.82 0.53
20 0.22 5.83 0.52
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A Predictor Envelope Dimension Selection

I use a sequential F-test of Osten (1988) to estimate K with degree of freedom estimates

from Krämer and Sugiyama (2011). The F-statistic’s value for cross-section t is given by

F = PRESS(k)− PRESS(k + 1)
D̂OF (k + 1)− D̂OF (k)

/
PRESS(m+ 1)
N − D̂OF (k + 1)

, (17)

D̂OF (m) =
(trace(ΣXt)

λmax

)
m, (18)

where λmax is the largest eigenvalue of ΣXt and PRESS(m) is the predicted error sum of

squares for the PER model estimated with m components. The F-test’s null hypothesis is

H0 : PRESS(m) ≤ PRESS(m+ 1), which means increasing the PER envelope dimension

from m to m+ 1 does not contain incremental information about covariance between stock

returns and firm characteristics. The F-test’s alternative hypothesis is H1 : PRESS(m) ≥

PRESS(m+ 1), which means increasing the PER envelope with dimension m omits some

covariance between returns and characteristics necessary for estimating bt. The F-test is

computed sequentially until the null hypothesis is not rejected with a significance level of

0.05.

The F-test above uses degree of freedom estimates from Krämer and Sugiyama (2011).

Krämer and Sugiyama (2011) using the PLS regression model’s number of components as

the model’s degrees of freedom is biased downwards and the bias can be large. Specifically,

Krämer and Sugiyama (2011) shows if the largest eigenvalue λmax of ΣXt satisfies

λmax ≤
1
2trace(ΣXt), (19)

then

D̂OF (1) ≥ 1 + trace(ΣXt)
λmax

. (20)

The condition λmax ≤ 1
2trace(ΣXt) is true for each characteristic cross-section used later in

the paper’s empirical results, so the PER model’s envelope dimension is certainly a too-small

estimate of the model’s degrees of freedom when K = 1. Additionally, the typical value
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of trace(ΣXt )
λmax

for this paper’s empirical results is greater than 20. So, the inequality above

indicates the PER model’s envelope dimension is typically too-small of an estimate for PER

models with envelope dimensions less than or equal to 20 in the paper’s sample because the

PER model’s degrees of freedom when K = 1 should be less than the model’s degrees of

freedom when K > 1.

The paper uses the function defined in equation (18) to estimate the degrees of freedom for

the PER model with an envelope of dimension m. The degree of freedom estimator defined

by equation (18) is an approximation of an unbiased estimator developed by Krämer and

Sugiyama (2011) is numerically unstable, i.e. returns a negative degree of freedom estimate,

when applied to samples with many covariates and specifically when applied to all of the

paper’s cross-sections. Equation (18) approximates the unbiased estimator by assuming

degrees of freedom are a linear function of trace(ΣXt )
λmax

for the PER model. Practically, this

approximation produces much larger degree of freedom estimates than the naive approach

and empirical results reported by Krämer and Sugiyama (2011) indicate degrees of freedom

are roughly proportional to trace(ΣXt )
λmax

.
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